产品名称	YM310 X08 CAT1 模块硬件使用指南
页数	59
版本	V1.0 (数传模块)
日期	2025/10/28

YM310 X08 CAT1 模块硬件使用指南

V1.0

Shanghai YUGE Information Technology co., LTD
All rights reserved

修订历史

文档版本	发布日期	更改说明	作者
V1.0	2025/10/28	初稿	David

目 录

第1章 引言	10
第 2 章 模块综述	11
2.1 模块简介	
2.2 模块特性	
2.3 模块功能	13
第 3 章 接口应用描述	15
3.1 本章概述	15
3.2 模块接口	16
3.2.1 模块管脚分布图	16
3.2.2 管脚定义	17
3.3 工作模式	22
3.4 电源设计	23
3.4.1 主电源工作特性	23
3.4.2 电压稳定性要求	23
3.4.3 电源参考电路	24
3.4.4 VDD_EXT 电压输出	25
3.5 开关机和复位	26
3.5.1 开机	26
3.5.2 关机	27
3.5.2.1 PWRKEY 管脚关机	27
3.5.2.2 低电压自动关机	28
3.5.3 复位	28
3.6 UART	29
3.6.1 串口应用	30
3.6.2 串口参考设计	31
3.7 USB 接口	
3.8 强制下载	
3.9 USIM 卡接口	
3.10 功能管脚	35
3.10.1 MAIN_RI	35

3.10.2 MAIN_DTR	
3.11 状态指示接口	38
3.12 ADC 接口	39
3.13 I2C 接口	39
3.14 省电功能	39
3.14.1 最少功能模式/飞行模式	39
3.15 睡眠模式(慢时钟)	40
3.15.1 串口应用	40
3.15.2 睡眠模式 1	40
3.15.3 睡眠模式 2	40
3.16 USB 应用	41
3.17 模式切换汇总	41
3.18 射频接口	41
3.18.1 天线匹配电路	42
3.18.2 射频走线参考	42
第 4 章 总体技术指标	44
4.1 本章概述	44
4.2 工作频率	44
4.3 射频传导测量	44
4.3.1 测试环境	44
4.3.2 测试标准	44
4.4 传导接收灵敏度和发射功率	45
4.5 功耗特性	45
第 5 章 接口电气特性	47
5.1 本章概述	47
5.2 工作存储温度	47
5.3 绝对最大额定值	47
5.4 电源额定值	47
5.5 静电特性	48
5.6 可靠性指标	48
第6章 结构及机械特性	50
6.1 本章概述	50
6.2 外观	50

YM310 X08 CAT1 模块硬件使用指南

6.3 机械尺寸	51
第7章 包装与生产	53
7.1 本章概述	53
7.2 模块包装与存储	53
7.3 生产焊接	53
第8章 附录	55
8.1 本章概述	55
8.2 缩略语	
8.3 编码方式	56
8.4 使用安全与注意事项	59

图片索引

图 2-1 YM310 X08 模块功能框图	14
图 3-1 YM310 X08 模块管脚分布图(TOP 透视)	16
图 3-2 供电电源设计	24
图 3-3 LDO 线性电源参考电路	25
图 3-4 DC 开关电源参考电路	25
图 3-5 开集驱动开机参考电路	26
图 3-6 按键开机参考电路	27
图 3-7 关机时序图	28
图 3-8 复位时序图	29
图 3-9 串口三线制连接方式示意图	30
图 3-10 三极管电平转换参考电路	31
图 3-11 电平转换芯片参考电路	32
图 3-12 USB 接口参考设计	
图 3-13 6pin USIM 设计参考电路图	34
图 3-14 6pin USIM 热插拔检测参考电路	35
图 3-15 语音呼叫时模块用作被叫方 MAIN_RI 时序	
图 3-16 数据呼叫时模块用作被叫方 MAIN_RI 时序	
图 3-17 模块主叫时 MAIN_RI 时序	
图 3-18 收到 URC 信息或者短信时 MAIN_RI 时序	37
图 3-19 网络状态指示灯电路图	38
图 3-20 天线匹配电路	42
图 3-21 微带线的完整结构	43
图 3-22 带状线的完整结构	43
图 3-23 参考地为第三层 PCB 微带传输线结构	43
图 6-1 YM310 X08 外观图	50

YM310 X08 CAT1 模块硬件使用指南

图 6-2 YM310 X08 模组俯视与侧视尺寸图(单位:毫米)	51
图 6-3 YM310 X08 模组推荐封装(单位:毫米)	52
图 7-1 回流焊温度曲线图	54

表格索引

表 2-1 模块频段列表	11
表 2-2 关键特性	11
表 3-1 管脚定义	17
表 3-2 IO 参数定义	18
表 3-3 引脚电气特性	18
表 3-4 管脚描述	19
表 3-5 工作模式	
表 3-6 中断唤醒管脚说明	23
表 3-7 电源管脚定义	23
表 3-8 电源设计说明	24
表 3-9 开关机管脚定义	26
表 3-10 复位管脚定义	28
表 3-11 主串口信号定义	29
表 3-12 辅助串口信号定义	30
表 3-13 调试串口信号定义	30
表 3-14 USB 接口管脚定义	
表 3-15 BOOT 接口管脚定义	
表 3-16 SIM 卡信号定义	34
表 3-17 MAIN_RI 管脚信号定义	
表 3-18 MAIN_RI 管脚功能描述	35
表 3-19 MAIN_DTR 管脚信号定义	
表 3-20 状态指示管脚定义	38
表 3-21 模块网络状态指示	38
表 3-22 ADC 管脚定义	39
表 3-23 I2C 管脚定义	39

YM310 X08 CAT1 模块硬件使用指南

表 3-24 模式切换汇总表	41
表 3-25 天线接口管脚定义	41
表 4-1 LTE 工作频段表	44
表 4-2 测试仪器	44
表 4-3 LTE 射频灵敏度	45
表 4-4 LTE 射频发射功率	45
表 4-5 休眠空闲功耗	45
表 4-6 LTE 数据传输功耗	46
表 5-1 YM310 X08 模块工作存储温度	47
表 5-2 YM310 X08 模块电压电流耐受值	47
表 5-3 YM310 X08 模块工作电压	47
表 5-4 YM310 X08 ESD 特性	48
表 5-5 YM310 X08 可靠性测试	48
表 7-1 回流工艺参数表	54
表 8-1 术语缩写	55
表 8-2 GPRS/EDGE 不同等级的时隙分配表	56
表 8-3 GPRS 最大速率	57
表 8-4 EDGE 最大速率	57
表 8-5 LTE-FDD DL 最大速率	57
表 8-6 LTE-FDD III. 最大谏率	58

第1章 引言

本文档是无线解决方案产品 YM310 X08 LGA 封装 CAT1 模块硬件接口手册,旨在描述该模块方案产品的硬件组成及功能特点、应用接口定义及使用说明,电气性能和机械特性等。结合本文档和其他应用文档,用户可以快速使用该模块来设计无线应用方案。

第2章 模块综述

2.1 模块简介

YM310 X08 是一款支持中国移动频段的 LTE Cat.1 bis 应用模块,采用 EC716S/EC716E 平台设计,符合 3GPP Rel 14 技术,支持最高 10Mbps 下载速率和 5Mbps 上传速率。

YM310 X08 是 LGA 封装的贴片式模组, 共有 50 个 LGA 引脚。模组尺寸仅有(13.45 ± 0.1)mm × (10.48 ± 0.1)mm × (1.85 ± 0.15) mm。超小超薄尺寸,超高性价比,满足小尺寸终端的低成本设计需求。

YM310 X08 模块可以应用在以下场合:

- ◆ 自动化领域
- ◆ 智能计算
- ◆ 跟踪系统
- ◆ 安防系统
- ◆ 路由器
- ◆ 无线 POS 机
- ♦ 移动计算设备
- ◆ 共享单车、云喇叭等

2.2 模块特性

表2-1模块频段列表

网络制式	支持频段
LTE-FDD	Band 3/8
LTE-TDD	Band 34/38/39/40/41

表2-2 关键特性

特性	描述
物理特性	$(13.45\pm0.1) \times (10.48\pm0.1) \times (1.85\pm0.15) \text{ mm}$
固定方式	LGA 封装,贴片固定
工作电压	供电电压范围: 3.3V - 4.3V 典型电压 3.8V
省电电流	休眠电流< 3.5uA

11015107	100 CHIT 大火吹门又	DIAH)
	USIM 接口	◆ 支持一组 3.0V/1.8V USIM 卡,支持热插拔功能
		◆ 符合 USB2.0 规范(仅支持从模式),数据传输速率最大到
	TIOD +女口	480Mbps
	USB 接口	◆ 用于 AT 命令、数据传输、软件调试和软件升级
		◆ USB 驱动支持 Windows/Linux/Android 等
		主串口:
		◆ 用于 AT 命令和数据传输
		◆ 波特率最高支持 921600bps
	UART 接口	辅助串口:
应		◆ 用于与外设通讯
用		调试串口:
接		◆ 用于调试信息输出,打印模块日志
П	I2C 接口	◆ 符合 I2C 总线协议
	120 按口	◆ 支持 2 路 I2C 接口
	ADC 接口	◆ 支持 2 路 12 位采样 ADC
	小子长二 	◆ NET_STATUS 网络运行状态指示
	状态指示	♦ STATUS* 模块运行状态指示
42 由于	1. →	♦ LTE-FDD: Class3(23dBm+-2dB)
发射功	力 学 	
		◆ 最大支持 non-CA CAT1
		◆ 支持 1.4~20MHz 射频带宽
		◆ LTE-FDD:最大上行速率 5Mbps,最大下行速率 10Mbps
数据业	业务	◆ LTE-TDD: 上下行配置 1
		◆ 最大上行速率 4Mbps,最大下行速率 6Mbps
		◆ LTE-TDD: 上下行配置 2
		◆ 最大上行速率 2Mbps, 最大下行速率 8Mbps
AT 指令		◆ 支持标准 AT 指令集(Hayes 3GPP TS 27.007 和 27.005)
		◆ 具体查询 AT 指令集
网络协议		◆ 支持 TCP/UDP/PPP/HTTP/NITZ/CMUX/RNDIS/NTP/
		♦ HTTPS/PING/MQTT 协议
天线技	妾口	◆ LTE_ANT×1,特征阻抗 50 欧姆
虚拟网卡		◆ 支持 USB 虚拟网卡
温度范围		◆ 正常工作温度-30℃ to + 75℃
		-

	◆ 极限工作温度-40°C to + 85°C
	存储温度-40℃ to + 90℃
湿度	♦ RH5%~RH95%

MOTE

◆ 当温度在 -40℃~-30℃或+75℃~+85℃范围时,模块射频个别指标可能会略微超出 3GPP 标准范围。模块仍能保持正常工作状态,射频频谱、网络基本不受影响。当温度恢复至正常工作温度范围时,模块各项指标仍能符合 3GPP 规范要求。

2.3 模块功能

YM310 X08 模块主要包含以下电路单元:

- ◆ 基带射频处理单元
- ◆ 电源管理单元
- ◆ 模块接口单元

YM310 X08 模块功能框图如下所示:

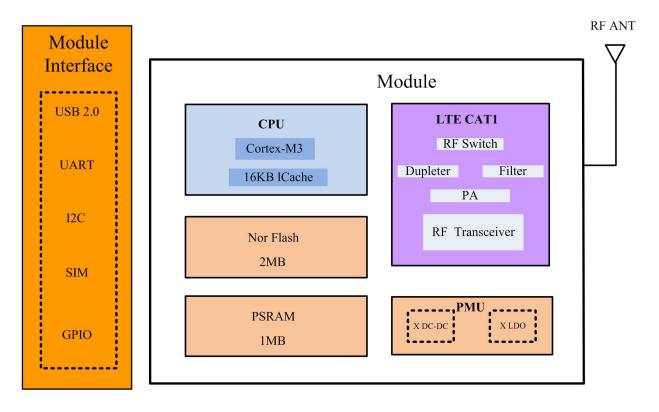


图 2-1 YM310 X08 模块功能框图

第3章 接口应用描述

3.1 本章概述

本章主要描述该模块的接口定义和应用。包含以下几部分:

- ◆ 模块管脚分布图
- ◆ 管脚定义
- ◆ 电源接口
- ◆ USB 接口
- ◆ USIM 接口
- **♦ UART接口**
- **♦ ADC**接口
- ◆ I2C接口
- ◆ 状态指示接口
- ♦ 射频天线接口

3.2 模块接口

3.2.1 模块管脚分布图

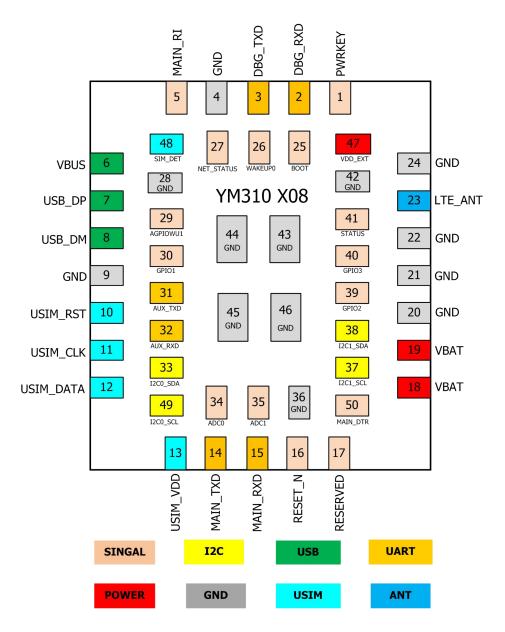


图 3-1 YM310 X08 模块管脚分布图 (TOP 透视)

◯ NOTE

- ◆ RESERVED 引脚需保持悬空。
- ◆ 模块 25 脚在模块成功开机前禁止上拉。

3.2.2 管脚定义

YM310 X08 模块是 LGA 接口模块, 其管脚定义如下表所示:

表3-1管脚定义

	₹3-1 自 //Ψ℃入						
引脚 序号	引脚名称	引脚 序号	引脚名称				
1	PWRKEY	2	DBG_RXD				
3	DBG_TXD	4	GND				
5	MAIN_RI	6	VBUS				
7	USB_DP	8	USB_DM				
9	GND	10	USIM_RST				
11	USIM_CLK	12	USIM_DATA				
13	USIM_VDD	14	MAIN_TXD				
15	MAIN_RXD	16	RESET_N				
17	RESERVED	18	VBAT				
19	VBAT	20	GND				
21	GND	22	GND				
23	LTE_ANT	24	GND				
25	BOOT	26	WAKEUP0				
27	NET_STATUS	28	GND				
29	AGPIOWU1	30	GPIO1				
31	AUX_TXD	32	AUX_RXD				
33	I2C0_SDA	34	ADC0				
35	ADC1	36	GND				
37	12C1_SCL	38	I2C1_SDA				
39	GPIO2	40	GPIO3				
41	STATUS	42	GND				
43	GND	44	GND				
45	GND	46	GND				
47	VDD_EXT	48	SIM_DET				
49	I2C0_SCL	50	MAIN_DTR				

表3-2 IO参数定义

符号标志	描述
DIO	数字双向输入输出
PI	电源输入
PO	电源输出
AI	模拟输入
AO	模拟输出
DI	数字输入
DO	数字输出
OD	漏级开路

表3-3 引脚电气特性

	冷口	1	-3 分脚电气特性	He 표현 Adv	自上层			
引脚电压域	缩写	描述	最小值	典型值	最大值			
	1.8V	1.8V						
	VIH	输入有效高	0.7*LDO_A					
	VIH	电平	ONIO	-				
LDO_AONIO	X / II	输入有效低			0.041.00. 4.00.110			
(睡眠模式不	VIL	电平		-	0.2*LDO_AONIO			
掉电)	MOH	输出有效高	0.8*LDO_A					
	VOH	电平	ONIO	-				
	1101	输入有效低			0.1544.00. 4.00.40			
	VOL	电平		-	0.15*LDO_AONIO			
	1.8V							
	X/III	输入有效高	0.7*VO_LD					
	VIH	电平	OIO	-				
VO_LDOIO	VIII	输入有效低			0.34110 1.0010			
(睡眠模式掉	VIL	电平		-	0.2*VO_LDOIO			
电)	MOH	输出有效高	0.8*VO_LD					
	VOH	电平	OIO	-				
	MOI	输入有效低			0.15*1/0.1.00/0			
	VOL	电平		-	0.15*VO_LDOIO			
VDD18AON								
(睡眠模式不	VIH	输入有效高	0.7*VDD18A	-				

掉电)		电平	ON		
	VIL	输入有效低			0.2*VDD18AON
	VIL	电平		-	0.2 VDD18AON
	VOH	输出有效高	0.8*VDD18A		
	VOII	电平	ON	-	
	VOL	输入有效低			0.15*VDD18AON
	VOL	电平		-	0.13 VDD18AON

表3-4管脚描述

			农3-4官邸佃处	
电源				
管脚号	管脚定义	Ю	功能描述	备注
13	USIM_VDD	PO	SIM 卡电源	自动识别 1.8V 或 3V 卡
18, 19	VBAT	PI	模块电源输入	外部电源需要提供最少
				1.5A 电流
				常规或 PSM 输出高电平,
47	VDD_EXT	PO	1.8V 电压输出	具备 3mA 驱动能力,只用
				作参考电平
4, 9, 20	-22, 24, 28, 36,		GND	
42-46			UND	
模块状态	指示接口			
管脚号	管脚定义	IO	功能描述	备注
管脚号 27	管脚定义 NET_STATUS	IO DO	功能描述 模块网络状态指示	备注 LDO_AONIO 电压域
27	NET_STATUS	DO	模块网络状态指示	
				LDO_AONIO 电压域
27	NET_STATUS	DO	模块网络状态指示	LDO_AONIO 电压域 LDO_AONIO 电压域,保
27	NET_STATUS	DO	模块网络状态指示	LDO_AONIO 电压域 LDO_AONIO 电压域,保
27 41 调试串口	NET_STATUS STATUS*	DO DO	模块网络状态指示模块运行状态指示	LDO_AONIO 电压域 LDO_AONIO 电压域,保留功能,待开发
27 41 调试串口 管脚号	NET_STATUS STATUS* 管脚定义	DO DO IO	模块网络状态指示 模块运行状态指示 功能描述	LDO_AONIO 电压域 LDO_AONIO 电压域,保留功能,待开发 备注
27 41 调试串口 管脚号 2	NET_STATUS STATUS* 管脚定义 DBG_RXD	DO DO IO DI	模块网络状态指示 模块运行状态指示 功能描述 调试串口数据接收	LDO_AONIO 电压域 LDO_AONIO 电压域,保留功能,待开发 备注 VO_LDOIO 电压域
27 41 调试串口 管脚号 2 3	NET_STATUS STATUS* 管脚定义 DBG_RXD	DO DO IO DI	模块网络状态指示 模块运行状态指示 功能描述 调试串口数据接收	LDO_AONIO 电压域 LDO_AONIO 电压域,保留功能,待开发 备注 VO_LDOIO 电压域
27 41 调试串口 管脚号 2 3 主串口	NET_STATUS STATUS* 管脚定义 DBG_RXD DBG_TXD	DO DO IO DI DO	模块网络状态指示 模块运行状态指示 功能描述 调试串口数据接收 调试串口数据发送	LDO_AONIO 电压域 LDO_AONIO 电压域,保留功能,待开发 备注 VO_LDOIO 电压域 VO_LDOIO 电压域

15	MAIN_RXD	DI	主串口数据接收	VO_LDOIO 电压域
辅助串口	_			
管脚号	管脚定义	Ю	功能描述	备注
31	AUX_TXD*	DO	辅助串口数据发送	VO_LDOIO 电压域
32	AUX_RXD*	DI	辅助串口数据接收	VO_LDOIO 电压域
SIM 接口				
管脚号	管脚定义	Ю	功能描述	备注
10	USIM_RST	DO	USIM 卡复位	1.8V/3V
11	USIM_CLK	DO	USIM 卡时钟	1.8V/3V
12	USIM_DATA	DIO	USIM 卡时钟	1.8V/3V
13	USIM_VDD	PO	USIM 卡供电	自动识别 1.8V 或 3V SIM 卡
48	USIM_DET	DI	USIM 卡热插拔检 测	VDD18AON 电压域
模块开关	机与复位			
管脚号	管脚定义	Ю	功能描述	备注
1	PWRKEY	DI	模块开关机信号	低电平有效,控制模块开 关机
16	RESET_N	DI	模块复位信号	低电平有效
BOOT 接	口			
管脚号	管脚定义	Ю	功能描述	备注
25	ВООТ	DI	强制下载启动	高电平有效
I2C 接口				
管脚号	管脚定义	Ю	功能描述	备注
37	I2C1_SCL	DO	I2C1 总线时钟	需外部上拉电阻,
38	I2C1_SDA	DIO	I2C1 总线数据	VO_LDOIO 电压域
33	I2C0_SDA	DIO	I2C0 总线数据	需外部上拉电阻,
49	I2C0_SCL	DO	I2C0 总线时钟	VO_LDOIO 电压域
ADC 接口	1			
管脚号	模块管脚定义	Ю	功能描述	备注
34	ADC0	AI	12bits 通用 ADC 转 换	内部直连: 输入电压范围: 0~1.05V

35	ADC1	AI	12bits 通用模数转 换	内部分压: 输入电压范围: 0~3.3V 默认 1.05V,可通过软件 开启内部分压
射频接口				
管脚号	模块管脚定义	Ю	功能描述	备注
23	LTE_ANT	AIO	主天线	50 欧姆特性阻抗
中断唤醒	接口			
5	MAIN_RI	DO	用于模块唤醒主机	LDO_AONIO 电压域,不 用则悬空
50	MAIN_DTR	DI	用于主机唤醒模块	VDD18AON 电压域,睡 眠态下可保持
USB 接口	l			
管脚号	模块管脚定义	IO	功能描述	备注
6	USB_VBUS	AI	USB 插入检测	建议不超过 5.25V,通过 内部电阻分压
7	USB_DP	AIO	USB2.0 差分数据+	符合 USB2.0 协议规范
8	USB_DM	AIO	USB2.0 差分数据-	90 欧姆差分阻抗
其他接口				
管脚号	模块管脚定义	Ю	功能描述	备注
26	WAKEUP0	DI	唤醒功能引脚	VDD18AON 电压域,不 用则悬空
29	AGPIOWU1	DIO	通用 GPIO	VDD18AON 电压域,睡 眠态下可保持
30	GPIO1	DIO	通用 GPIO	VO I DOIO 中正常 睡吧
39	GPIO2	DIO	通用 GPIO	VO_LDOIO 电压域, 睡眠 态下不可保持
40	GPIO3	DIO	通用 GPIO	1

NOTE

- ◆ 二次开发 GPIO 复用功能详见对应《YM310_X08_GPIO_table》
- ◆ 电源域为 LDO_AONIO 和 VDD18AON 的 GPIO 在休眠状态下状态能够保持。电源 域为 VO_LDOIO 的 GPIO,睡眠状态下会掉电不可保持。
- ◆ 所有 GPIO 和 wakeuppad 都支持双边沿中断;可以复用为 wakeup 的 GPIO, 休

眠以及唤醒状态下都能使用; 其余 GPIO 唤醒状态下可用,休眠状态下不能使用; wakeup IO 可以唤醒休眠,其余 GPIO 都不可以。

◆ EC716 使用 3.3V IO 方案,必要说明:

芯片设计限制,原则上不可以用 3.3V IO,如果使用 3.3V IO 或者外部接了 3.3V 的外设(包括但不限于 MCU,传感器等等),可能会导致关机状态下,VBAT 上电压在 1.8V~3V 的不稳定状态,在需要开机的时候无法开机。所以使用 3.3V IO 的前提是必须保证芯片在关机状态下,VBAT 电压小于 1.8V,或者大于 3V。使用 3.3V IO 情况下,原理图必须提供我司审核!

使用 AT 固件

MCU 端确保对接 EC716 的 IO 端口在 716 掉电 (VBAT=0) 或关机状态下,保持输出低,或输入下拉。即不能有电流倒灌进 EC716。

使用 OPEN 固件

硬件设计上保证芯片在关机状态下, VBAT 电压小于 1.8V, 或者大于 3V, 可选但不限于:

- 1、VBAT长供电,PWRKEY开关机
- 2、VBAT 断电,外设上下电由 EC716 管控, EC716 关机下外设断电
- 3、VBAT 断电,外设 IO 无对外供电能力
- 4、软件上调用相关 API 来调整 IO 电平到 3.3V

3.3 工作模式

下表简要的叙述了接下来几章提到的各种工作模式。

表3-5 工作模式

模式	描述	
工学工作	ACTIVE	连接正常工作。有数据或者语音或者短信交互。此模式下,模块功耗取决于环境信号的强弱,动态 DTX 控制以及射频工作频率。
正常工作	IDLE	MCU 内核时钟关闭,系统中断随时可以唤醒模块。模块注册上网络,没有数据,语音和短信交互。进入和退出IDLE 模式均由系统自动管理
休眠模式	SLEEP1	休眠模式下。外设均会被关闭,大部分 IO 处于掉电状态,仅有 AGPIO 能够保持电平,功耗极大降低。通过AT+CSCLK=1 或者 AT+CSCLK=2 进入此模式
关机模式	OFF	此模式下 PMU 停止给基带和射频供电,软件停止工作,

串口不通,但 VBAT 管脚依然通电

M NOTE

◆ 模块进入休眠状态后只能通过以下管脚中断唤醒退出休眠模式。

管脚号 管脚名 描述 I/O 拉低开机管脚触发中断 **PWRKEY** 开/关机 6 **VBUS** USB 插入唤醒 外部 USB 插入,拉高触发 14, 15 MAIN TXD/RXD 串口发数据唤醒模块 主串口 50 模块唤醒管脚 拉低触发中断唤醒 MAIN DTR

表3-6 中断唤醒管脚说明

3.4 电源设计

YM310 X08 模块共有 2 个 VBAT 电源引脚和 1 个 VDD_EXT 输出电源。 YM310 X08 模块电源接口定义如下:

管脚号	名称	I/O	描述	最小值	典型电压	最大值
5	VDD_EXT	PO	输出 1.8V 供电		1.8V	
18, 19	VBAT	PI	模块主电源	3.3V	3.8V	4.3V

表3-7 电源管脚定义

3.4.1 主电源工作特性

模块应用设计中,电源设计是很重要的一部分。LTE 射频工作时最大峰值电流高达 1.5A,最大发射功率下会有约 650mA 的持续工作电流,因此电源必须能够提供足够的电流,不然有可能会引起供电电压的跌落甚至模块直接掉电重启。

3.4.2 电压稳定性要求

模块电源 VBAT 电压输入范围为 3.3V~4.3V,模块在射频发射时通常会在 VBAT 电源上产生电源电压跌落现象,这是由于电源或者走线路径上的阻抗导致,一般难以避免。为减少模块工作时的电源波动,需采用低 ESR 值的稳压电容,VBAT 走线尽量短足够宽,以减小走线的等效阻抗。另为保证电源稳定,建议在电源前端加 VRWM=4.7V、低钳位电压和高峰值脉冲电流 IPP 的 TVS 管。

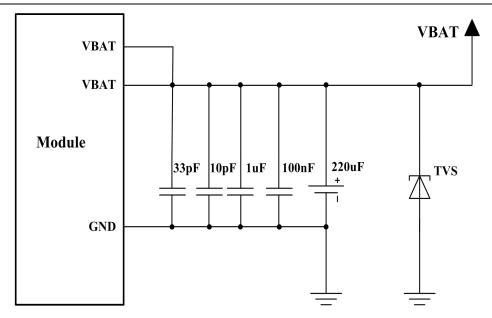


图 3-2 供电电源设计

推荐值应用说明备注220uF稳压电容采用低 ESR 值电容,减少电源波动WS4.5D3HV低电容 TVS 管避免电源浪涌或 ESD 破坏芯片1uF, 100nF滤波电容滤除数字信号噪声的干扰33pF, 10pF滤波电容滤除低频,中频段的射频干扰

表3-8 电源设计说明

3.4.3 电源参考电路

电源设计对模块的稳定工作至关重要,必须选择能够提供至少 1A 电流能力的电源。若输入电压跟模块的供电电压的压差小于 2V,建议选择 LDO 作为供电电源。若输入输出之间存在的压差大于 2V,则推荐使用开关电源转换器以提高电源转换效率。

LDO 供电:

下图是 5V 供电的参考设计,采用了 Micrel 公司的 LDO,型号为 MIC29302WU。它的输出电压是 4.16V,负载电流峰值到 3A。为确保输出电源的稳定,建议在输出端预留一个稳压管,并且靠近模块 VBAT 管脚摆放。

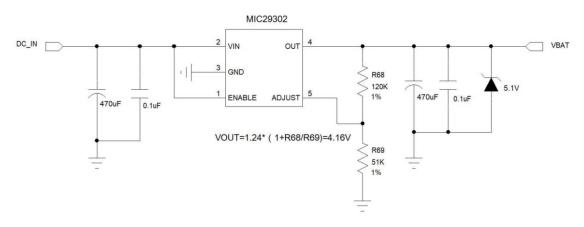


图 3-3 LDO 线性电源参考电路

DC-DC 供电:

下图是 DC-DC 开关电源的参考设计,采用的是杰华特公司的 JW5359M 开关电源芯片,它的最大输出电流是 2A,输入电压范围 3.7V~18V。注意 C25 的选型要根据输入电压来选择合适的耐压值。

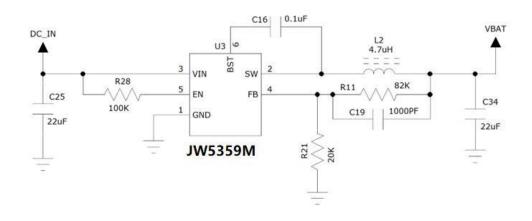


图 3-4 DC 开关电源参考电路

3.4.4 VDD_EXT 电压输出

VDD_EXT 电源不论模块处于常规、低功耗、PSM 模式始终输出高电平,电流驱动能力不超 3mA。可用作电平转换电路的上拉参考电源,不能用于给外设供电,只用作参考电源。

3.5 开关机和复位

3.5.1 开机

YM310 X08 模块 PIN1 脚是开机脚,可通过拉低模块 PIN1 脚 PWRKEY 至少 1s 开机,用户可通过查询 VDD EXT 管脚的高低电平来判断模块是否开机

	TO STATE OF THE PROPERTY OF TH							
管脚	信号名称	I/O 属性	电压域	描述				
1	PWRKEY	DI	VDD18AON	模块开机/关机控制脚				

表3-9 开关机管脚定义

VBAT 供电稳定后,模块在关机情况下,可以通过如下两种方式来触发 YM310 X08 开机:

1.按键开机: PWRKEY 管脚通过轻触按键连接到地,按键按下 1 秒以上实现开机。

2.上电开机: PWRKEY 管脚直接短接到地, VBAT 上电后就可以实现开机。

模组上电后,通过 PWRKEY 管脚启动模块,把 PWRKEY 管脚拉低 1 秒以上模块会执行开机流程,软件检测 VBAT 管脚电压,VBAT 电压大于软件设置的开机电压(3.3V),会继续开机动作直至系统开机完成;否则,会停止执行开机动作,系统会关机。可以通过检测 VDD_EXT 管脚的电平来判别模块是否开机。推荐使用开集驱动电路来控制 PWRKEY 管脚。下图为参考电路:

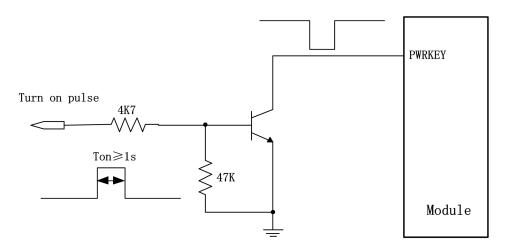


图 3-5 开集驱动开机参考电路

另一种控制 PWRKEY 管脚的方法是直接使用一个按键开关。为防止接触产生的静电冲击,按键附近需放置一个 TVS 管用以 ESD 保护。下图为参考电路:

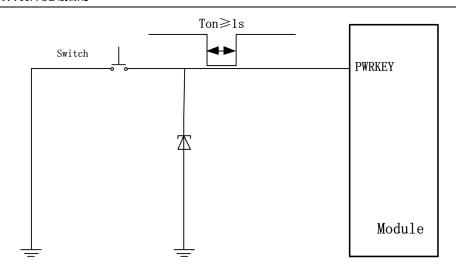


图 3-6 按键开机参考电路

M NOTE

可通过将模块 PWRKEY 管脚直接下拉到地实现上电自动开机方式,下拉电阻建议 4.7K Ω 。此种开机方式不支持模块按键关机。

3.5.2 关机

YM310_X08 模组可通过以下方式正常关机

- ◆ 通过 PWRKEY 管脚控制模组关机
- ◆ 通过 AT 指令 AT+CPOWD 关机

3.5.2.1 PWRKEY 管脚关机

开机状态下 PWRKEY 管脚拉低 1.5s 以上时间,模块会执行关机动作。关机过程中,模块需要注销网络,注销时间与当前网络状态有关,经测定用时约 2s~12s,因此建议延长 12s 后再进行断电或重启,以确保在完全断电之前让软件保存好重要数据。

关机时序图如下:

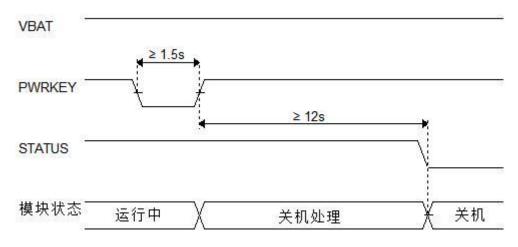


图 3-7 关机时序图

3.5.2.2 低电压自动关机

模块在运行状态时当 VBAT 管脚电压低于模块设置的最低工作电压时(默认设置 3.3V),软件会执行关机动作,以防低电压状态下运行出现各种异常。

3.5.3 复位

拉低 RESET_N 引脚至少 300ms 以上可使模块复位。RESET_N 信号对干扰比较敏感,建议模块接口走线尽量短,且包地处理。

 管脚
 信号名称
 I/O 属性
 电压域
 描述

 16
 RESET_N
 DI
 VDD18AON
 模块复位输入,低有效;无需外部上 拉,之后模块会进行重启

表3-10 复位管脚定义

RESET 时序如下:

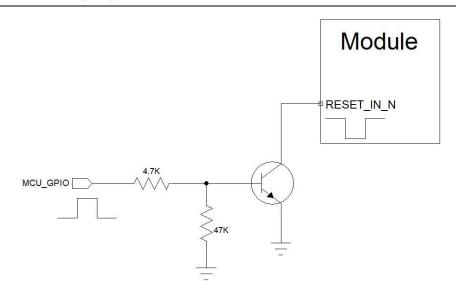


图 3-8 复位时序图

M NOTE

◆ 模组支持 AT 命令复位, AT 指令为 AT+CFUN=1,1 即可重启模块。详细指令可查看 AT 指令集手册。

3.6 UART

YM310 X08 模块提供三组 UART 接口: 主串口、调试串口、辅助串口。

该串口可实现 AT 交互指令,与外设数据交互等。

模块主串口波特率可设置 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600bps 波特率等,默认为 115200bps。

支持低功耗唤醒模组功能。

主串口接口从属于 VO_LDOIO 电源域,默认 1.8V 电平;模组进入休眠模式时 VO LDOIO 会掉电,MAIN RXD 切换至内部 1.2V 电源。

主串口接口定义如下:

管脚号	信号名称	属性	描述	备注	
14	MAIN_TXD	DO	主串口数据发送	睡眠状态: 切换至内部 VDD18AON	
15	MAIN_RXD	DI	主串口数据接受	电压域; 非睡眠状态: VO_LDOIO 电源域	

表3-11 主串口信号定义

辅助串口接口定义如下:

表3-12 辅助串口信号定义

管脚号	信号名称	属性	描述	备注
28	AUX_RXD*	DI	辅助串口数据发送	用于外设通讯,功能开发中
29	AUX_TXD*	DO	辅助串口数据接收	7117月及週刊及1

调试串口接口定义如下:

表3-13 调试串口信号定义

管脚号	信号名称	属性	描述	备注
38	DBG_RXD	DI	调试串口数据发送	用于部分 log 日志输出,保
39	DBG_TXD	DO	调试串口数据接收	留测试点

Debug 串口的使用包括但不限于以下两种场景:

1、低功耗场景:

在低功耗场景下, USB 无法使用, 只能通过 DBG TXD、DBG RXD 来抓取日志。

2、非低功耗场景:

模块接入 USB 时,工作正常,未接入 USB 时,工作异常的情况,只能通过 DBG_TXD、DBG RXD 来抓取日志。

3.6.1 串口应用

串口的连接方式较为灵活,三线制的串口参考如下的连接方式:

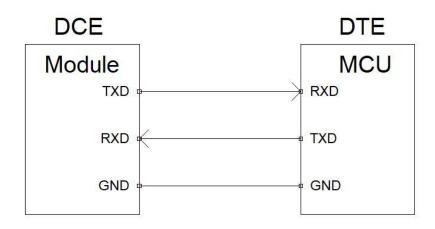


图 3-9 串口三线制连接方式示意图

3.6.2 串口参考设计

YM310 X08 模块的串口固定为 1.8V 电平,能够满足大部分 MCU 的串口直接需求,如果要和 3.3V 或者以上的 MCU 外设通信,那就必须要加电平转换电路。合适的串口电平转换电路需要考虑几个因素:串口的工作速率,低功耗要求等。

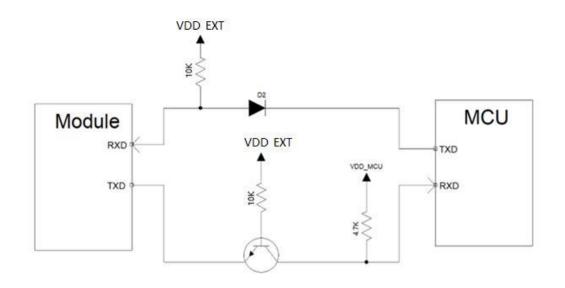


图 3-10 三极管电平转换参考电路

M NOTE

- ◆ 此电平转换电路不适用波特率高于 460800 bps 的应用。
- ◆ D2 选用低导通压降的肖特基二极管。(二极管前向电压≤0.3V)对于波特率高于 460800bps 的串口应用,建议外加电平转换芯片来实现电平匹配。

参考电路如下:

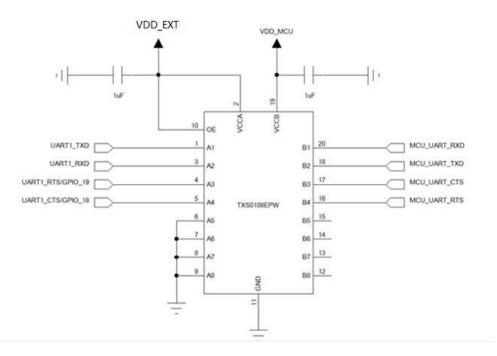


图 3-11 电平转换芯片参考电路

此电路采用的是电平转换芯片是 TI 的 TXS0108E,8 位双向电压电平转换器,适用于漏极开路和推挽应用,最大支持速率:

推挽: 110Mbps 开漏: 1.2Mbps

3.7 USB 接口

YM310 X08 模块支持一路 USB2.0 接口,支持从设备模式,不支持 USB 充电功能,该接口可用于 AT 指令、数据传输、固件升级等。

USB 接口定义如下:

表3-14 USB接口管脚定义

管脚号	信号名称	IO	描述	备注
6	VBUS	AI	USB 插入检测	典型值 5V
7	USB_DP	AIO	USB 2.0 差分数据(+)	符合 USB2.0 规范,要求
8	USB_DM	AIO	USB 2.0 差分数据(-)	满足90Ω差分阻抗

USB 接口参考设计电路如下:

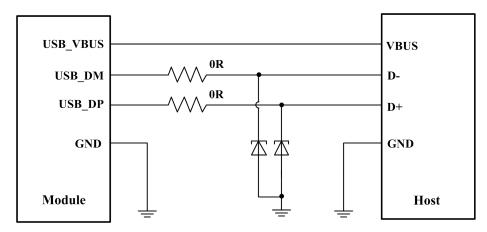


图 3-12 USB 接口参考设计

■ NOTE

- ◆ USB 支持高速(480Mbps)和全速(12Mbps)模式,走线设计需要严格遵循 USB2.0 协议 要求,注意对数据线的保护,差分走线,越短越好,尽可能远离高速信号或其他同 频信号,控制阻抗为 90 Ω。
- ◆ 为提高 USB 接口的抗静电性能,建议数据线上增加 ESD 保护器件,保护器件的等效电容值小于 1pF。建议在数据线上串联 0 欧姆电阻。
- ◆ 模块的 USB 接口对外不提供 USB 总线电源,模块只能作为从设备。
- ◆ USB接口支持的功能有:软件下载升级、数据通讯、AT Command等功能。
- ◆ VBUS 作为 USB 插入唤醒作用,并不直接参与 USB 插入检测,非必须,在不需要 USB 插入唤醒的场景也可以不接。

3.8 强制下载

YM310 X08 支持 BOOT 功能。可在模块开机前把 BOOT 引脚上拉到 VDD_EXT, 开机时模块将进入强制下载模式,此时可通过 USB 接口对模块进行软件升级。

表3-15 BOOT接口管脚定义

管脚	信号名称	I/O 属性	电压域	描述
25	BOOT	DI	VO_LDOIO	强制下载启动

3.9 USIM 卡接口

YM310 X08 模组提供一个兼容 ISO 7816-3 标准的 USIM 卡接口, USIM 卡电源由模块内部电源管理器提供,支持 1.8V 和 3.0V 的 USIM 卡。

表3-16	SIM-	长信	문	定义
1×3-10	OHVI	I		ᄯ

管脚号	信号名称	属性	描述
10	USIM_RST	DO	USIM 卡复位信号
11	USIM_CLK	DO	USIM 卡时钟信号
12	USIM_DATA	DIO	USIM 卡数据信号
13	USIM_VDD	PO	USIM 卡供电电源,最大供电电流 10mA
48	USIM_DET	DI	USIM 卡热插拔检测

YM310 X08 模块不自带 USIM 卡槽,用户使用时需在自己的接口板上设计 USIM 卡槽。USIM 卡接口。

参考电路如下:

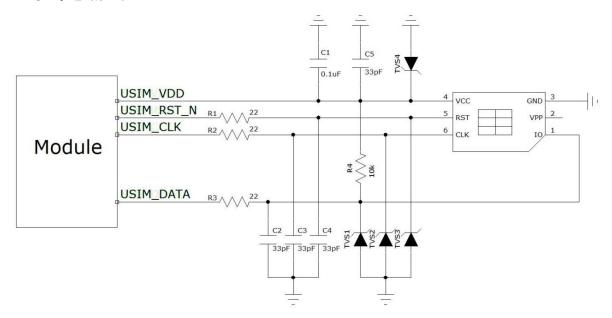


图 3-13 6pin USIM 设计参考电路图

如果需要用到 USIM 卡在位检测, 推荐电路如下:

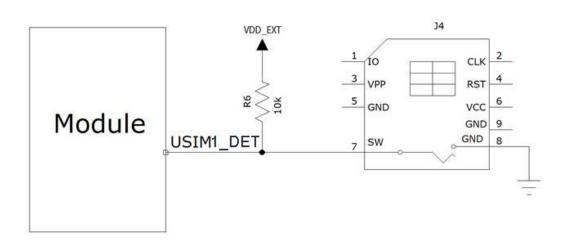


图 3-14 6pin USIM 热插拔检测参考电路

M NOTE

SIM 卡接口的电路设计中,为了确保 SIM 卡良好的功能性能和不被损坏,电路设计中建议遵循以下设计原则:

- ◆ USIM 接口外围电路器件应该靠近卡座放置, USIM 卡座靠近模块布局。
- ◇ USIM 卡电路容易受到射频干扰引起不识卡或掉卡,因此卡槽应尽量放置在远离天线射频辐射的地方,卡走线尽量远离射频,电源和高速信号线。
- ◆ USIM 接口为避免瞬间电压过载,建议在信号线通路上各串联一个 22R 的电阻。
- ◆ USIM 卡座的地和模块的地要保持良好的连通性。
- ◆ 在需要模块进入休眠的场景 SIM_DET 禁止用 VDD_EXT 上拉, 否则会造成无法休眠的问题。建议用外部 LDO 上拉。
- ◆ USIM_DET 管脚可根据不同卡座,通过 AT 命令设置检测功能,如使用常闭式 USIM 卡座时,设置 AT+CSDT=1: 默认上升沿触发,不插卡是低,插入卡是高电平 AT+CSDT=1,0: 可以配置下降沿触发,不插卡是高,插入卡是低电平 AT+CSDT=1,1 可以配置上升沿触发,不插卡是低,插入卡是高电平。

3.10 功能管脚

3.10.1 MAIN_RI

表3-17 MAIN_RI管脚信号定义

管脚号	信号名称	IO	描述
5	MAIN_RI	DO	振铃信号,唤醒输出管脚,用于唤醒 AP

表3-18 MAIN RI管脚功能描述

状态	MAIN_RI 应答
待机	高电平
	变为低电平,之后:
	(1) 通话建立时变为高电平
语音呼叫	(2) 使用 AT 命令 ATH 挂断语音,MAIN_RI 变为高电平
四目+1+1	(3) 呼叫方挂断,MAIN_RI 首先变为高电平,然后拉为低电平持续
	120ms,收到自动回复 URC 信息
	"NO CARRIER",之后再变为高电平
	变为低电平, 之后:
	1. 数据连接建立时变为高电平
数据传输	2. 使用 AT 命令 ATH 挂断数据连接,MAIN_RI 变为高电平
亥 久√百 [マ 相]	3. 呼叫方挂断,MAIN_RI 首先变为高电平,然后拉为低电平持续
	120ms, 收到自动回复 URC 信息
	"NO CARRIER",之后再变为高电平
短信	收到新的短信,MAIN_RI 变为低电平,持续 120ms,再变为高电平
URC	某些 URC 信息可以触发 MAIN_RI 拉低 120ms

如果模块用作主叫方,MAIN_RI 会保持高电平,收到 URC 信息或者短信时除外。 而模块用作被叫方时, MAIN_RI 的时序如下所示:

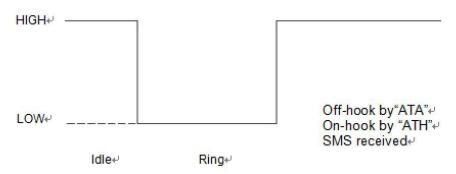


图 3-15 语音呼叫时模块用作被叫方 MAIN_RI 时序

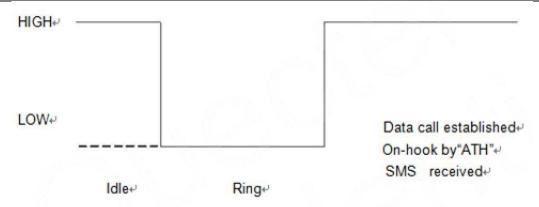


图 3-16 数据呼叫时模块用作被叫方 MAIN_RI 时序

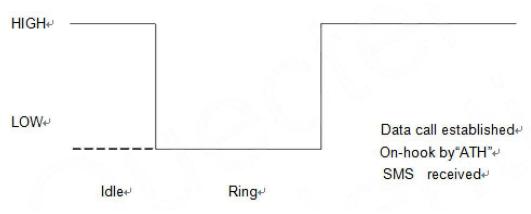


图 3-17 模块主叫时 MAIN_RI 时序

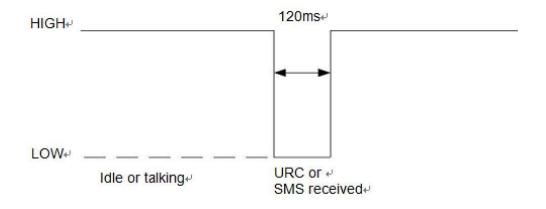


图 3-18 收到 URC 信息或者短信时 MAIN_RI 时序

3.10.2 MAIN_DTR

表3-19 MAIN DTR管脚信号定义

管脚号	信号名称	IO	描述
50	MAIN_DTR	DI	模块休眠唤醒管脚,拉高允许模块进入休

眠模式; 在休眠模式下, 拉低可唤醒模块

支持两种睡眠模式:

睡眠模式 1: 发送 AT+CSCLK=1, 通过 MAIN_DTR 管脚电平控制模块是否进入睡眠

睡眠模式 2: 发送 AT+CSCLK=2, 模块在串口空闲一段时间后自动进入睡眠

3.11 状态指示接口

YM310 X08 模块提供两路 GPIO 来指示模块状态。

表3-20	状态指示管脚定义	l

管脚	信号名称	I/O	电源域	描述
27	NET_STATUS	DO	LDO_AONIO	网络状态指示
41	STATUS*	DO	LDO_AONIO	运行状态指示,保留功能待开发

表3-21 模块网络状态指示

引脚名称	网络运行状态指示	电平状态
	通话中	高电平
NET STATUS	数据传输状态	快闪(125ms 高/125ms 低)
NEI_STATUS	待机状态	慢闪 (1800ms 高/200ms 低)
	搜网状态	慢闪 (200ms 高/1800ms 低)

模块网络状态指示灯参考设计图如下:

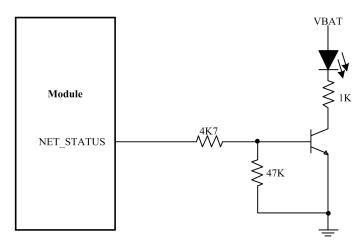


图 3-19 网络状态指示灯电路图

3.12 ADC 接口

YM310 X08 模组提供两路模数转换器接口来读取电压值。

表3-22 ADC管脚定义

管脚号	信号名称	描述	电平值(V)	备注
34	ADC0	ADC 接口	内部直连: 输入电压范围: 0~1.05V 内部分压:	12bits精
35	ADC1	ADC 按口	和市分压: 输入电压范围: 0~3.3V 默认 1.05V,可通过软件开启内部分压	度

3.13 I2C 接口

YM310 X08 模块提供两组 I2C 接口, I2C 接口为 1.8V 电平值, 5.0 协议接口, 时钟速率为 400KHz。

表3-23 I2C管脚定义

管脚	信号名称	I/O 属性	描述	备注
37	I2C1_SCL	DO	I2C1 总线时钟	
38	I2C1_SDA	DIO	I2C1 总线数据	需外部上拉电阻,VO_LDOIO
33	I2C0_SDA	DIO	I2C0 总线数据	电源域
49	I2C0_SCL	DO	I2C0 总线时钟	

3.14 省电功能

根据系统需求,有两种方式可以使模块进入到低功耗的状态。对于 AT 版本使用 "AT+CFUN"命令可以使模块进入最少功能状态。

3.14.1 最少功能模式/飞行模式

- ◆ 0: 最少功能(关闭 RF 和 SIM 卡);
- ◆ 1: 全功能(默认);
- ◆ 4: 关闭 RF 发送和接收功能; 如果使用 "AT+CFUN=0"将模块设置为最少功能模式,射频部分和 SIM 卡部分的

功能将会关闭。而串口依然有效,与射频部分以及 SIM 卡部分相关的 AT 命令则不可用。

如果使用"AT+CFUN=4"设置模块,RF部分功能将会关闭,而串口依然有效。所有与RF部分相关的AT命令不可用。

模块通过 "AT+CFUN=0"或者"AT+CFUN=4"设置以后,可以通过"AT+CFUN=1"命令设置返回到全功能状态

3.15 睡眠模式(慢时钟)

3.15.1 串口应用

串口应用下支持两种睡眠模式:

- ◆ 睡眠模式 1: 通过 MAIN DTR 管脚电平控制模块是否进入睡眠
- ◆ 睡眠模式 2: 模块在串口空闲一段时间后自动进入睡眠

3.15.2 睡眠模式 1

开启条件:

发送 AT 指令 AT+CSCLK=1

模块进入睡眠:

控制 MAIN DTR 脚拉高,模块会进入睡眠模式1

模块退出睡眠:

拉低 MAIN_DTR 脚 50ms 以上,模块会退出睡眠模式可以接受 AT 指令模块在睡眠模式 1 时的软件功能:

不响应 AT 指令,但是收到数据/短信/来电会有 URC 上报

HOST 睡眠时,模块收到数据/短信/来电如何唤醒 HOST:

MAIN RI 信号触发唤醒 HOST

3.15.3 睡眠模式 2

开启条件:

发送 AT 指令 AT+CSLCK=2

模块进入睡眠:

串口空闲超过 AT+WAKETIM 配置的时间(默认 5s),模块自动进入睡眠模式 2

模块退出睡眠:

串口连续发送 AT 直到模块回应时即退出睡眠模式 2。不响应 DTR 管脚中断唤醒 模块在睡眠模式 2 时的软件功能:

不响应 AT 指令,但是收到数据/短信/来电会有 URC 上报

HOST 睡眠时,模块收到数据/短信/来电如何唤醒 HOST:

MAIN RI 信号触发唤醒 HOST

3.16 USB 应用

开启条件:

USBHOST 必须支持 USB suspend/resume

模块进入睡眠:

HOST 发起 USB suspend

模块退出睡眠:

HOST 发起 USB resume

HOST 睡眠时,模块收到数据/短信/来电如何唤醒 HOST:

MAIN RI 信号

3.17 模式切换汇总

表3-24 模式切换汇总表

秋3 24 庆风切跃已远秋					
当前模式	下一模式				
	关机	正常模式	睡眠模式		
关机	-	使用 PWRKEY 开机	-		
正常模式	使用 PWRKEY 管脚,或 VBAT 电压 低于关机电压	-	软件调用睡眠接口, AT 版本不做动作 30s 自动休眠		
睡眠模式	使用 PWRKEY 管脚, 或 VBAT 电压低于关机电压	GPIO 管脚中断、定时器、接收短信或网络数据	-		

3.18 射频接口

YM310 X08 模块提供一路主天线接口,负责模块射频信号的接收和发送。天线接口特性阻抗均为 50 欧姆。

表3-25天线接口管脚定义

管脚号	信号名称	I/O 属性	描述	备注
23	LTE_ANT	AIO	主集天线接口	50 欧姆特性阻抗

3.18.1 天线匹配电路

为方便天线调试需要在主板上增加π型匹配电路,走 50 欧姆阻抗线。 电路如下图:

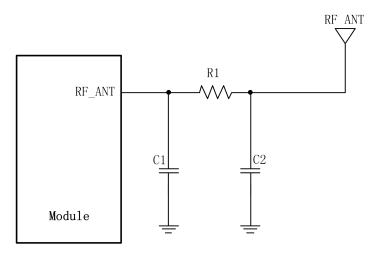


图 3-20 天线匹配电路

NOTE

- ◆ YM310 X08 模块的天线接口为焊盘引出的方式,故设计时需采用与之匹配的射频连接线。
- ◆ 实际设计时用户可根据电路板走线由天线厂调试匹配器件参数值, 主板 R1 默认贴 0 欧姆, C1/C2 默认空贴。
- ◆ 天线是一个敏感器件,易受外部周围环境的影响,故需要远离数字时钟线,DC 电源等干扰信号,建议使用完整的地层作为参考地。
- → 天线 LAYOUT 走线尽量短,尽可能走直线,避免过孔和翻层,立体包地,并在走线 两边多加地孔做隔离。

3.18.2 射频走线参考

YM310 X08 模块的天线采用焊盘方式引出,天线焊盘到天线馈点必须使用微带线或其他类型的 RF 走线,信号线的特性阻抗应控制在 50Ω。

射频 RF 信号线的阻抗,由材料的介电常数、走线宽度(W)、对地间隙(S)、以及参考地平面的高度(H)决定。因此射频走线需要使用阻抗模拟工具来计算 RF 走线的阻抗值。

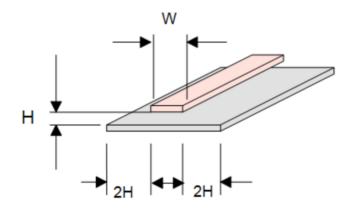


图 3-21 微带线的完整结构

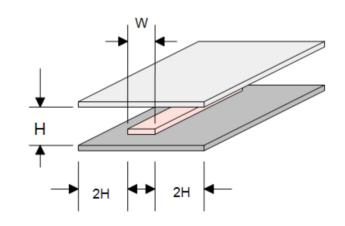


图 3-22 带状线的完整结构

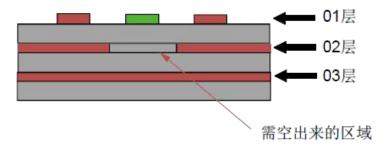


图 3-23 参考地为第三层 PCB 微带传输线结构

第4章 总体技术指标

4.1 本章概述

YM310 X08 模块射频总体技术指标包含以下部分:

- ◆ 工作频率
- ◆ 射频传导测量
- ◆ 传导接收灵敏度和发射功率
- ◆ 天线要求
- ♦ 模块功耗特性

4.2 工作频率

表4-1 LTE工作频段表

频段	上行频率	下行频率	双工模式
LTE B3	1710MHz - 1785MHz	1805MHz - 1880MHz	FDD
LTE B8	880MHz - 915MHz	925MHz - 960MHz	FDD
LTE B34	2010MHz - 2025MHz	2010MHz - 2025MHz	TDD
LTE B38	2570MHz - 2620MHz	2570MHz - 2620MHz	TDD
LTE B39	1880MHz - 1920MHz	1880MHz - 1920MHz	TDD
LTE B40	2300MHz - 2400MHz	2300MHz - 2400MHz	TDD
LTE B41	2535MHz - 2675MHz	2535MHz - 2675MHz	TDD

4.3 射频传导测量

4.3.1 测试环境

表4-2 测试仪器

测试仪器	电源	村田同轴射频线
R&S CMW500	Agilent 66319	MXHP32HP1000

4.3.2 测试标准

YM310 X08 模块通过 3GPP TS 51.010-1, 3GPP TS 34.121-1, 3GPP TS 36.521-1, 测试

标准。每个模块在工厂均通过严格测试,保证质量可靠。

4.4 传导接收灵敏度和发射功率

YM310 X08 模块 LTE 接收灵敏度和发射功率指标如下:

表4-3 LTE射频灵敏度

名录(灵敏度)	3GPP 协议要求	最小	典型	最大
LTE B3(FDD QPSK 通过>95%)	< - 93.3(10MHz)		-99.2	
LTE B8(FDD QPSK 通过>95%)	< - 93.3(10MHz)		-100.2	
LTE B34(TDD QPSK 通过>95%)	< - 96.3(10MHz)		-100.7	
LTE B38(TDD QPSK 通过>95%)	< - 96.3(10MHz)		-100.7	
LTE B39(TDD QPSK 通过>95%)	< - 96.3(10MHz)		-100.7	
LTE B40(TDD QPSK 通过>95%)	< - 96.3(10MHz)		-101.2	
LTE B41(TDD QPSK 通过>95%)	< - 94.3(10MHz)		-101.2	

表4-4 LTE射频发射功率

频段	3GPP 协议要求 (dBm)	最小	典型	最大
LTE B3	21 to 25	21	23	25
LTE B8	21 to 25	21	23	25
LTE B34	21 to 25	21	23	25
LTE B38	21 to 25	21	23	25
LTE B39	21 to 25	21	23	25
LTE B40	21 to 25	21	23	25
LTE B41	21 to 25	21	23	25

4.5 功耗特性

表4-5 休眠空闲功耗

模式	测试条件	电流值 (Avg)	单位
关机漏电	模块关机	0.8	uA
压归拱十	FDD@PF=32(USB 断开)	0.988	mA
睡眠模式	FDD@PF=64(USB 断开)	0.555	mA

	FDD@PF=128(USB 断开)	0.313	mA
	FDD@PF=256(USB 断开)	0.233	mA
	TDD@PF=32(USB 断开)	0.951	mA
	TDD@PF=64(USB 断开)	0.575	mA
	TDD@PF=128(USB 断开)	0.353	mA
TDD@PF=256(USB 断开)		0.229	mA
4- 掛口気	LTE-FDD@PF=64 (USB 断开)	3.318	mA
空闲模式	LTE-TDD@PF = 64 (USB 断开)	3.319	mA

表4-6 LTE数据传输功耗

频段	信道	功率 dBm	电流功耗 mA
LEE EDD DA	19250	21.8	484
LTE-FDD B3	19575	21.76	445
@10Mhz,FRB	19900	22.6	460
LEE EDD DO	21500	21.82	502
LTE-FDD B8	21625	22.07	445
@10Mhz,FRB	21750	22.2	444
LEE EDD DAA	36250	21.74	211
LTE-TDD B34	36275	22	210
@10Mhz,FRB	36300	21.9	212
ATTE TED DAG	37800	21.9	214
LTE-TDD B38	38000	22	226
@10Mhz,FRB	38200	22	232
LEE EDD DAG	38300	22.1	208
LTE-TDD B39	38450	22	209
@10Mhz,FRB	38600	22.1	207
LEE EDD D40	38700	21.9	215
LTE-TDD B40	39150	22.2	219
@10Mhz,FRB	39600	22.1	222
ATTE TOO DAY	40040	22.15	216
LTE-TDD B41	40740	22.28	235
@10Mhz,FRB	41440	22.2	246

第5章 接口电气特性

5.1 本章概述

- ◆ 工作存储温度
- ◇ 可靠性指标
- ◆ 电源电压
- ♦ 静电特性
- ◆ 绝对最大值

5.2 工作存储温度

表5-1 YM310 X08模块工作存储温度

参数	最小值	最大值
正常工作温度	-30℃	75℃
极限工作温度	-40°C	85℃
存储温度	-40°C	90℃

5.3 绝对最大额定值

下表所示是模块数字、模拟管脚的电源供电电压电流最大耐受值如下:

表5-2 YM310 X08模块电压电流耐受值

参数	最小	最大	单位
VBAT 电压	-0.3	4.7	V
VBUS 电压	-0.3	5.25	V
ADC 输入电压	-	3.6	V
VBAT 电流(Ipeak)	-	1.5	A
数字 GPIO 电压	-0.3	3.6	V

5.4 电源额定值

YM310 X08 模块输入供电电源要求如下:

表5-3 YM310 X08模块工作电压

参数	条件	最小值	典型值	最大值
VBAT	实际输入电压必须在该范围内	3.3V	3.8V	4.3V
Ibat	最大发射功率下	0	0.65	A
VBUS	USB 插入检测	3.3V	5.0V	5.25V

M NOTE

◆ 模块任何接口的上电时间不得早于模块的开机时间,否则可能导致模块异常或损坏。

5.5 静电特性

YM310 X08 模块内部设计时已经考虑并做了相应的 ESD 防护,但在模块的生产组装和实验测试中也有可能有 ESD 问题的发生,所以应用开发者需考虑最终产品的 ESD 防护。

客户设计时除了参考文档接口设计的推荐电路外,也需要注意以下几点:

- ◆ 防护器件 PCB 布线应尽量走 "V"形线,避免走"T"形线。
- ◆ 模块周边地平面保证完整性,不要进行分割。
- ◆ 在模块的生产、组装和实验室测试过程中需要关注周边环境和操作人员的 ESD 管控。 表5-4 YM310 X08 ESD特性

测试端口	接触放电	空气放电	单位
VBAT 和地	±5	±10	KV
天线接口	±4	±8	KV
其他接口	± 0.5	±1	KV

5.6 可靠性指标

表5-5 YM310 X08可靠性测试

测试项目	测试条件	参考标准	测试结果
低温工作	温度: -40℃ 工作模式: 正常工作 测试持续时间: 24h	IEC60068-2-1	外观检查:正常 功能检查:正常
高温工作	温度: 85℃ 工作模式: 正常工作 测试持续时间: 24h	JESD22-A108-C	外观检查:正常 功能检查:正常
温度循环	高温温度: 85℃	JESD22-A105-B	外观检查:正常

	低温温度: -40℃ 工作模式:正常工作		功能检查:正常
	测试持续时间: 30cycles;		
	1h+1h/cycle		
交变湿热	高温温度: 55℃ 低温温度: 25℃ 湿度: 95%±3% 工作模式: 正常工作 测试持续时间: 6 cycles; 12h+12h/cycle	JESD22-A101-B	外观检查:正常 功能检查:正常 射频指标检查:正常
温度冲击	高温温度: 85°C 低温温度: -40°C 温度变更时间: <30s 工作模式: 无包装, 无上电, 不开机 测试持续时间: 100 cycles; 15min+15min/cycle	JESD22-A106-B	外观检查:正常 功能检查:正常
跌落测试	高度 0.8m, 6 面各一次, 跌落到水平大理石平台工作模式: 无包装, 无上电,不开机	IEC60068-2-32	外观检查:正常 功能检查:正常 射频指标检查:正常
低温存储	温度: -40°C 工作模式:无包装,无上电, 不开机 测试持续时间:24 h	JESD22-A119-C	外观检查:正常 功能检查:正常
高温存储	温度: 85°C 工作模式: 无包装, 无上电, 不开机 测试持续时间: 24h	JESD22-A103-C	外观检查:正常 功能检查:正常

第6章 结构及机械特性

6.1 本章概述

- ◆ 外观
- ◆ 模块机械尺寸

6.2 外观

YM310 X08 模块为单面布局的 PCBA, 外观图如下所示:

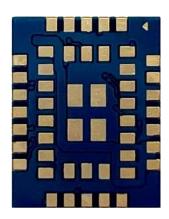


图 6-1 YM310 X08 外观图

备注:型号具体区别,见下表:

型号名	区别描述
YM310 X08ACMCX	采用主芯片移芯 EC716S 1 MB pSRAM +2 MB QSPI flash
YM310 X08ACMSX	采用主芯片移芯 EC716E 1 MB pSRAM +4 MB QSPI flash

6.3 机械尺寸

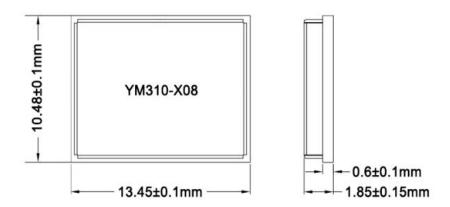


图 6-2 YM310 X08 模组俯视与侧视尺寸图(单位:毫米)

模块推荐封装:

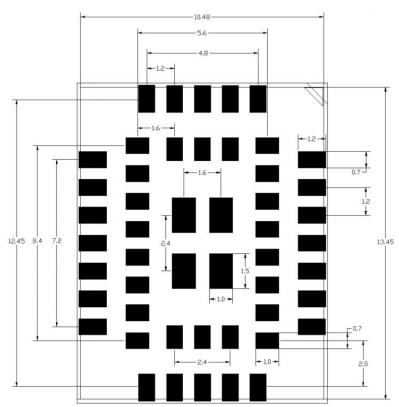


图 6-3 YM310 X08 模组推荐封装(单位: 毫米)

第7章 包装与生产

7.1 本章概述

- ◆ 模块包装与存储
- ◆ 生产焊接

7.2 模块包装与存储

YM310 X08 模块用编带包装,以 1000PCS 为一盘,每盘以真空密封袋的形式出货。 YM310 X08 模块的存储需遵循如下条件:

- ◆ 模块的潮湿敏感等级为3级。
- ◆ 环境温度小于 40 摄氏度,空气湿度小于 90%情况下,模块可在真空密封袋中存放 12 个月。
- ◆ 当真空密封袋打开后,若满足模块环境温度低于30摄氏度,空气湿度小于60%, 工厂在72小时以内完成贴片.模块可直接进行回流焊或其它高温流程。
- ◇ 若模块处于其他条件,需要在贴片前进行烘烤。
- ◆ 如果模块需要烘烤,移除模块包装后请在125摄氏度下(允许上下5摄氏度的波动) 烘烤8小时。

7.3 生产焊接

YM310 X08 模块使用编带包装, SMT 线体需配置 32mm 载料器;

- ◆ 为保证模块印膏质量, YM310 X08 模块焊盘部分对应的钢网厚度推荐为 0.12mm。
- ◆ 推荐回流焊的温度为 238~248°C, 不能超过 248°C。
- ◆ PCB 双面布局时,LGA 模块布局必须在第2面加工。避免因模块重力导致翻转回流时造成模块掉件、焊接开焊及模块内部焊接不良等。

推荐的炉温曲线图如下图所示:

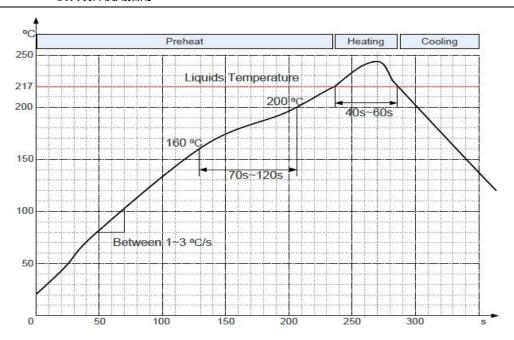


图 7-1 回流焊温度曲线图

表7-1 回流工艺参数表

温区	时间	关键参数
预热区(40℃~165℃)		升温速率: 1℃/s~3℃/s
均温区(160℃~210℃)	(t1~t2): 70s~120s	
回流区(>217℃)	(t3~t4): 40s~60s	峰值温度: 238℃~248℃
冷却区	降温速率: 2℃/s≤Slope≤	5°C/s

第8章 附录

8.1 本章概述

- ♦ 缩略语
- ◆ 编码方式
- ♦ 使用安全与注意事项

8.2 缩略语

表8-1 术语缩写

缩略语	全称
3GPP	Third Generation Partnership Project
AP	Access Point
AMR	Adaptive Multi-rate
BER	Bit Error Rate
CCC	China Compulsory Certification
CDMA	Code Division Multiple Access
СЕ	European Conformity
CSD	Circuit Switched Data
CTS	Clear to Send
DC	Direct Current
DTR	Data Terminal Ready
DL	Down Link
DTE	Data Terminal Equipment
EU	European Union
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
HSDPA	High-Speed Downlink Packet Access
HSPA	Enhanced High Speed PacketAccess
HSUPA	High Speed Up-link Packet Access
IMEI	International Mobile Equipment Identity
LED	Light-Emitting Diode

LTE	Long Term Evolution
NC	Not Connected
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDU	Protocol Data Unit
PMU	Power Management Unit
PPP	Point-to-point protocol
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RoHS	Restriction of the Use of CertainHazardous Substances
SMS	Short Message Service
TIS	Total Isotropic Sensitivity
TVS	Transient Voltage Suppressor
TX	Transmitting Direction
UART	Universal AsynchronousReceiver-Transmitter
UMTS	Universal Mobile Telecommunications System
USIM	Universal Subscriber Identity Module
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division MultipleAccess
WWAN	Wireless Wide Area Network

8.3 编码方式

表8-2 GPRS/EDGE不同等级的时隙分配表

Slot class	DL slot number	UL slot number	Active slot number
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4

7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

表8-3 GPRS最大速率

GPRS coding scheme	Max data rata (4 slots)	Modulation type
CS 1 = 9.05 kb/s / time slot	36.2 kb/s	GMSK
CS 2 = 13.4 kb/s / time slot	53.6 kb/s	GMSK
CS 3 = 15.6 kb/s / time slot	62.4 kb/s	GMSK
CS 4 = 21.4 kb/s / time slot	85.6 kb/s	GMSK

表8-4 EDGE最大速率

GPRS coding scheme	Max data rata (4 slots)	Modulation type
MCS $1 = 8.8 \text{ kb/s/ time slot}$	35.2 kb/s	GMSK
MCS $2 = 11.2 \text{ kb/s/ time slot}$	44.8 kb/s	GMSK
MCS $3 = 14.8 \text{ kb/s/ time slot}$	59.2 kb/s	GMSK
MCS $4 = 17.6 \text{ kb/s/ time slot}$	70.4 kb/s	GMSK
MCS $5 = 22.4 \text{ kb/s/ time slot}$	89.6 kb/s	8PSK
MCS $6 = 29.6 \text{ kb/s/ time slot}$	118.4 kb/s	8PSK
MCS $7 = 44.8 \text{ kb/s/ time slot}$	179.2 kb/s	8PSK
MCS $8 = 54.4 \text{ kb/s/ time slot}$	217.6 kb/s	8PSK
MCS $9 = 59.2 \text{ kb/s/ time slot}$	236.8 kb/s	8PSK

表8-5 LTE-FDD DL最大速率

LTE-FDD device category	Max data rate(peak)	Modulation type
Category 1	10Mbps	QPSK/16QAM/64QAM
Category 2	50Mbps	QPSK/16QAM/64QAM
Category 3	100Mbps	QPSK/16QAM/64QAM
Category 4	150Mbps	QPSK/16QAM/64QAM

表8-6 LTE-FDD UL最大速率

LTE-FDD device category	Max data rate(peak)	Modulation type
Category 1	5Mbps	QPSK/16QAM
Category 2	25Mbps	QPSK/16QAM
Category 3	50Mbps	QPSK/16QAM
Category 4	50Mbps	QPSK/16QAM

8.4 使用安全与注意事项

为了安全的使用无线设备,请终端设备告知用户相关安全信息:

- ◆ 干扰: 当禁止使用无线设备或设备的使用会引起电子设备的干扰与安全时,请 关闭无线设备。因为终端在开机的状态时会收发射频信号。当靠近电视、收音 机、电脑或者其它电器设备时会对其产生干扰。
- ◆ 医疗设备: 在明文规定禁止使用无线设备的医疗和保健场所,请遵循该场所的规定,并关闭本设备。某些无线设备可能会干扰医疗设备,导致医疗设备不能正常工作,或导致误差,如果发生干扰,请关闭无线设备,并咨询医生。
- ◆ 易燃易爆区域:在易燃易爆区域,请关闭您的无线设备,并遵守相关标识说明, 以免引起爆炸或火灾。如:加油站、燃料区、化工制品区域以及化工运输及存 储设施,有爆炸危险标志的区域,有"关掉无线电设备"标志的区域等。
- ◆ 交通安全: 请遵守所在国家或地区的当地法律或法规关于在驾驶车辆时对无线 设备使用的相关规定。
- ◆ 航空安全: 乘坐飞机时,请遵守航空公司关于无线设备使用的相关规定和条例。 在起飞前,请关闭无线设备,以免无线信号干扰飞机控制信号。
- ◆ 环境保护:请遵守有关设备包装材料、设备或其配件处理的本地法令,并支持 回收行动。
- ◆ 紧急呼叫:本设备使用无线信号进行传播。因此不能保证所有情况下网络都能 连接,故在紧急情况下,不能将本无线设备作为唯一的联系方式。